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Abstract— There is a growing area of research showing that 
complex diseases have been found to be caused by significant 
genetic variants, that is, multiple changes to the normal genome 
across multiple locations. Predicting the risk of these diseases is 
difficult due to the limited knowledge of variant causation and 
the leading approaches currently focus on gene-disease 
association. In this work, we propose a cardiovascular disease 
based analysis using an enhanced indel deep neural network 
(EI-DNN), comprised of two deep neural networks using novel 
indel variants alongside conventional variant sites to predict 
disease risk. This model uses two deep neural networks in series, 
the first to process indel data and the second to provide the risk 
score. The experiments were performed on our proposed 
algorithm using the MGRB database and compared against a 
conventional PRS calculation and a single DNN algorithm. The 
experimental results validate the effectiveness of the proposed 
method and highlight the capabilities with combining indel 
variants to enhance disease prediction. 
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I. INTRODUCTION 
 

Genomics is the study of how your DNA reproduces the 
cells in your body. Genetic diseases are diseases caused by 
changes in an individual’s genome. These conditions can be 
categorized into monogenic, denoting diseases that are 
caused by one genetic variant, and polygenic, denoting 
diseases that are caused by several variants across the genome 
that have some contribution to the disease risk [1]. Common 
diseases are often most likely polygenic [2]. This makes 
polygenic diseases much more complicated to understand. 
This is further exacerbated since there are two sets of each 
chromosome. If there is one variant on one chromosome but 
not the other this is called heterozygous, and if both 
chromosomes have the same variant this is called 
homozygous. Thus, polygenic diseases can vary based on 
several variants and the severity of the disease could be 
affected whether an individual is heterozygous or 
homozygous for all these different variants [3].  

Cardiovascular diseases (CVD) are a group of a highly 
studied polygenic diseases [4]. It is the largest cause of death 
globally, with 10.8 million deaths attributed to cardiovascular 
disease and contributed to 11.3 million deaths in 2021 [5]. To 
help in prevention of CVD, many studies have been 
undertaken to understand the many gene-disease associations 
and identify people with high risk of future CVD [4]. 
However, the accurate prediction of CVD continues to 
remains a challenge [4].  

 
The relationship of genetic variants and disease has been 

difficult to fully understand, particularly as the detection of 
variants has outpaced the ability to understand the 
relationship between variants and pathogenic outcomes [6]. 
Efforts to understand the gene-disease relationship have been 
undertaken in the field of bioinformatics, as seen in many 
gene-disease or variant-disease association algorithms such 
as Bibliometric Engine or databases such as ClinVar or 
Human Phenotype Ontology [7]. Since several genes are 
associated with polygenic diseases, it is commonly assessed 
using a polygenic risk score (PRS) also known as a polygenic 
score (PGS) [8]. Many genetic diseases and traits have PRS 
information available including CVD such as coronary artery 
disease and hypertension, multiple cancers such as breast 
cancer and pancreatic cancer, and lifestyle diseases such as 
type 2 diabetes [8]. Publicly available catalogues such as the 
PGS catalogue and Genome-wide association studies 
(GWAS) catalogue have collated numerous associations 
from GWAS and other papers to implement PRS findings 
onto new data [9].  
 

PRS uses a linear regression algorithm to provide a 
disease risk score for each individual patient [10]. This 
algorithm is constructed using all trait-associated genetic 
variants and their associated weightings, as seen in equation 
1, where N is the number of variants, 𝛽𝑖 is the effect size, and 
𝑋𝑖 is the genotype or variant. 
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While this method has been popular to implement, there 

are several associated limitations. The only genetic variants 
that are used in constructing a PRS are single nucleotide 
polymorphisms (SNPs), a variant in which a single base pair 
is swapped for another [10]. This excludes many different 
types of variants such as structural variants and small 
insertions or deletions (indels) which could be key 
contributions for a PRS. Even within the SNP group, only 
common SNPs are utilized. This is defined as a called as 
minor allele frequency of > 0.01, meaning at least 1% of the 
global population has this variant [10]. Furthermore, the data 
cleaning steps are very aggressive and many SNPs are 
removed in this process [10]. This minute selection of chosen 
variants limits the scope of an individual’s whole genomic 
data, oversimplifying what variation is investigated within a 
PRS [4]. Another limitation is the weightings provided for 
each SNP in a PRS calculation catalogue. GWAS have been 
undertaken to investigate several polygenic traits and define 
associated SNPs and SNP weightings based on its p-values 
and odds ratios [11]. However, there is no distinction between 
whether this weight only applies to variants that are 
homozygous or heterozygous, or whether the weighting 
changes depending on this state. Another limitation is the 
equation PRS is based on. The simplistic linear nature of 
equation 1 means the aforementioned limitations do not have 
a good way of being integrated into the risk score calculation.  
 

Using this PRS methodology tends to produce prediction 
scores with low accuracy. Thus, conventional PRS have not 
been able to be used clinically for several traits and diseases 
[1]. To improve the accuracy of PRS and make it a useful tool 
in bioinformatics, there have been efforts to utilize machine 
learning (ML). This is mainly because the linear nature of the 
original PRS framework is limiting, and ML allows many 
features or variants to be investigated [12]. Several classical 
ML algorithms have been tested due to the ease of use from 
accessible packages in popular programming languages, such 
as scikit-learn in python [13]. Consequently, more complex 
algorithms have also been studied, with deep neural networks 
(DNN) being a popular ML algorithm to test [14]. However, 
there are still limitations with these DNN approaches, namely 
still using only GWAS SNP data which restricts the use of a 
larger use of genomic data. 

 
This paper presents an enhanced indel DNN (EI-DNN), 

comprised of a double DNN architecture that incorporate 
other structural variants such as indels alongside SNPs to 
generate a more accurate and precise PRS. To validate this 
proposed algorithm, we compared the results of the 
conventional PRS calculation with our EI-DNN architecture 
using a cohort from the Medical Genome Reference Bank 
(MGRB). Our results suggest that deep learning can be used 
to predict polygenic traits more accurately as well as identify 
other necessary genetic information that can enhance the 
predictive ability of PRS. 
 

 

In this paper, our main contributions are as follows: 
• We developed EI-DNN to integrate critical genomic 

data into PRS calculation and compared it against a 
single DNN and conventional PRS algorithms to 
demonstrate the advantage of our approach. 

• By incorporating structure variants into the risk 
score calculation, our model offers an example of an 
intelligent bioinformatics approach to PRS. 

 
The structure of this paper is as follows: Section II 

presents the related work. Section III summarizes the 
methodology. Section IV outlines the experiment undertaken 
to test the methodology. Section V presents and discusses the 
results from the experiments. The last section offers 
conclusions and directions for further research. 

 

II. RELATED WORK 
To establish our EI-DNN method, the following areas 

need to be studied: DNN, combining machine-learning 
techniques, and genetic-based disease prediction. 

A. Deep Neural Networks 
DNN have been a popular ML algorithm implemented in 

several fields due to its flexibility, ability to handle large 
complex datasets, and learn non-linear relationships [15]. In 
the field of genomics and bioinformatics, DNNs have been 
used for many applications as well [13]. Yang et al. used a 
DNN to predict gene-disease relationships for Parkinson’s 
disease [16]. They combined multi-view phenotype features 
with genotype features as input into the DNN and the 
resulting output was a vector that represented the disease and 
genes. The experiment had a precision improvement of 
9.55% and recall improvement of 9.63% compared to other 
standard algorithms. Another use of DNN was for clustering 
and dimension reduction of RNA data, a similar type of 
dataset to DNA. Peng et al. used the Gene Ontology database 
into the DNN to reduce features, cluster data, and ultimately 
identify different cell types [17].  

 
In PRS applications, DNNs have been previously tested 

to compare against conventional PRS and other ML 
algorithms. Badre et al. tested several ML algorithms and 
found that a 5-layer DNN model had the best accuracy for 
disease prediction of breast cancer [12]. Similarly, Zhou et al. 
found that a 7-layer DNN was more accurate for Alzheimer’s 
disease prediction over PRS algorithms [14].  

B. Ensemble Neural Networks 
Ensemble methods are also a very popular approach to 

machine learning. The performance of these ensemble 
methods can improve by combining predictions from 
multiple models [15]. In the case of neural networks, there 
are several that operate using an integration of multiple 
network types in series or in parallel. Some examples of these 
include generative adversarial networks for generative 
models and Siamese networks for discriminative models. 
Cheng et al. used a GAN model in gene classification and 
variant detection [18]. A generative model was used to alter 
the genetic sequence while the discriminative model would 
compare the genetic sequence and identify what genes were 
altered [18]. The success of this model demonstrates the 
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power of processing unseen genetic data with unknown 
patterns and the capabilities of the model to adapt to a 
biological understanding and explain the problematic nature. 
Koh et al. used a Siamese network to capture the similarities 
between different cells and transfer the labelled cell 
annotations from a single cell RNA dataset to an unannotated 
cell [19]. This network was able to flag novel cells not in the 
original dataset and cluster these into new subtypes as well.  

C. Genetic-based Disease  Prediction 
Several PRS algorithms have been developed based on 

the basic linear regression improve the accuracy of these 
scores. PLINK is an open-source C/C++ software first 
developed in 2007 by Purcell et al. that is extensively used in 
a wide variety of genetic analyses [20]. While not solely for 
the use of PRS, it is able to perform all the steps in calculating 
PRS using the conventional clumping and thresholding 
method (C+T), where SNPs are filtered to be independent 
from each other, removing linkage disequilibrium (LD), so 
the effects can be summed together. This is a highly manual 
process, so Euesden et al. developed PRSice and its successor 
PRSice2, which follow the same C+T methods, automating 
the steps in a PLINK pipeline in R, including finding the most 
predictive p-value threshold for PRS calculation [21]. To 
improve and utilize the typically removed SNPs that are 
correlated to each other during PRS, LDpred by Vilhjámsson 
et al. and its successor LDpred-2 by Privé et al. are methods 
that utilize Bayesian statistics to improve the PRS accuracy 
[22, 23]. The PRS is calculated similarly but considers LD 
SNPs by incorporating an independent reference panel from 
the same population. Lassosum is a method constructed by 
Shin Heng Mak et al. that uses LASSO regression to select 
the most relevant SNPs for PRS and estimates the regression 
coefficients of the chosen SNPs as the effect weight. It also 
integrates the LD reference panel and altogether generates a 
PRS [24]. 
 

Indels, a compound abbreviation meaning insertions and 
deletions are a type of structural genetic variant that are 
prevalent throughout the genome, found in coding genes, 
non-coding genes, and regulatory areas [25]. Healthy 
individuals have indels present in their genome with no 
associated disease phenotypes, however, there are several 
disorders that can arise from the presence of indels within a 
gene. Curtis investigated the use of logistic regression for 
PRS in the disease case of schizophrenia [26]. To increase 
accuracy of his score, he added rare and schizophrenia-

associated copy number variants, another type of structural 
genetic variant with the weighted SNPs to add another layer 
of information to each patient.  

 

III. METHODOLOGY 

A. Problem Definition 
While PRS is simple to compute, the predictive power 

tends to be low, thus making it unsuitable for clinical use and 
is often used as a check to see whether it aligns with other 
known tests. Its goal is to predict the risk of disease is 
severely limited [1]. While it is easy to change the linear 
regression model to a non-linear one to increase predictive 
power, there are some further issues. In its current form, PRS 
is difficult to improve because there are limited features used, 
only using independent SNPs, and neglecting a range of other 
variant types. Another key issue that needs to be addressed is 
how to handle the other variant types and undertake feature 
selection. 

B. Overview of the EI-DNN architecture 
The EI-DNN is a double deep neural network using novel 

indel variants alongside conventional variant sites to predict 
disease risk. To achieve our proposed methods, two DNNs 
were created in series, inspired by the multiple network 
structures from the related work and their ability to process 
complex data. The first DNN was for feature selection of 
relevant indels from the patient data. The second provided the 
score calculation. 

 
The entire EI-DNN algorithm is summarized in Fig. 1 and 
can be defined as follows:  
𝑀 = 𝑓%(𝑥),𝑀 ∈ [0, 1] where 𝑥 is the variant feature vector, 
𝑀 is the probability of the sample given 𝑥, 𝜃 is the set of 
learning parameters of the neural network 𝑓. 
 
𝐺 = 𝑔&(𝑦), 𝐺 ∈ [0, 1] where 𝑦 is the genes feature vector, 𝐺 
is the output score, and 𝜙 is the set of learning parameters of 
neural network 𝑔. 
 
We define the value function 𝑉(𝐺,𝑀) and training of 𝑀 and 
𝐺 by maximising 𝑉(𝐺,𝑀) 
 
max
!,#

𝑉(𝐺,𝑀) =	𝐸$~&(()[𝑙𝑜𝑔𝐺(𝑦)] + 𝐸$~&($) 4𝑙𝑜𝑔𝐺5𝑀(𝑥)78 

 
Fine tune training consists of backpropagation.  

 
Fig. 1. The EI-DNN framework for polygenic risk score calculation diagram 
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C. Feature Selection DNN 
The input of this DNN was a matrix with all 1093 patients 

as rows and all discovered indels as features. This DNN 
constituted of 17 hidden layers: 7 dense layers (activation 
functions: tanh for the first 3, softmax for the next 2, and 
sigmoid for the last 2), 5 batch normalization layers, and 5 
dropout layers (dropout rate: 0.5 for first, 0.2 for the next 2, 
0.1 for the last 2). The output of this DNN is a 4-column 
matrix which summarizes the polygenic effects of these 
indels, as Zhou hypotheses that the penultimate nodes may 
represent different biological process [14]. 
 

D. Risk Score Calculation DNN 
The input of this DNN was a concatenated matrix from 

the SNPs from the relevant GWAS catalogue for each patient 
with the 4-column matrix output from the first DNN. There 
are 16 hidden layers: 6 dense layers (activation functions: 
tanh for the first 3, softmax for the next 2, and sigmoid for 
the last), 5 batch normalization layers, and 5 dropout layers 
(dropout rate: 0.3 for the first, 0.2 for the second, and 0.1 for 
the last 3). The output is a risk score denoting a percentage 
for the binary traits of hypercholesterolemia and hypertension 
respectively.  

 

IV. EXPERIMENTATION 
In this section, we use the blood pressure and cholesterol 

labelled data derived from MGRB to evaluate the proposed 
method. We also conduct comparative experiments on the 
traditional weighted PRS and the single-DNN algorithm from 
[14] to demonstrate the predictive performance of our 
framework. 

A. Dataset 
The Medical Genome Reference Bank (MGRB) is a 

dataset funded by the NSW government in Australia [27]. 
This contains the whole genome sequences (WGS) of 4011 
individuals from two studies: the 45 and Up participants from 
the Sax Institute and ASPirin in Reducing Events in the 
Elderly (ASPREE) participants from Monash University. 
This data also contains phenotypic labels for each individual 
including height, gender, age, and weight. From these 
participants, 1093 individuals had further information about 
whether they had treatment for high blood pressure and high 
cholesterol as a binary “TRUE” or “FALSE”. The data from 
the 1093 participants was cleaned using bcftools, a C-built 
program that is extensively used in bioinformatics for 
processing genomic data. 

B. Dataset Pre-processing 
For indel detection, bcftools and vcftools were used to 

extract out all indel sites from the entire WGS for all 1093 
individuals. From this process, over a million features were 
identified. To reduce the feature space, a subset was 
identified using the “chromosome:position” data from 
relevant genes, an evidence-based natural language 
processing algorithm [28]. This was then modified to work as 
input for a neural network by using one hot encoding. Two 
separate labels for blood pressure and high cholesterol were 
also added. This is summarized in Fig. 2.  

 
 
For SNP detection, PLINK 1.9 was used to extract the 

SNPs at the locations determined by the relevant GWAS 
summary statistics from the GWAS catalogue at 
https://www.ebi.ac.uk/gwas/. The catalogue codes were 
HP_0003124 for high cholesterol (hypercholesterolemia), 
and EFO_0000537 for high blood pressure (hypertension). 
For the weighted PRS experimentation, the PLINK 1.9 files 
were used. To convert the PLINK 1.9 output into an 
appropriate input into the neural network, it was converted 
into a single matrix. This is summarized in Fig. 3.  

 

 
C. Standard Baseline 

The process of cleaning, sorting SNPs, and final 
calculation of PRS scores was based on the tutorial by Choi 
et al. [10], which outlines the quality control steps for the base 
data from the GWAS and quality control of the target data, 
obtained for the MGRB. For the base data, the same three 
GWAS for hypercholesterolemia and hypertension as stated 
in the SNP variant selection were obtained from the GWAS 
catalogue. The target data was converted into PLINK 
readable files and filtered according to Choi et al. The 
resulting PRS calculated at the end of the process was used 
as a baseline result for comparison of the EI-DNN algorithm 
output. 

D. Experimental setup 
In this study, our central goal is to predict disease risk in 

individuals using their genome. In our experiments, we had 
756 features for hypertension, 12 for hypercholesterolemia 
from the GWAS association studies respectively, and 306 
features for hypertension 327 features for 
hypercholesterolemia from the indel extraction. 
 

The datasets were split 70% for training and 30% for 
testing. Furthermore, we used an epoch size of 40 and batch 
size of 100 for both DNNs. 
 

 
Fig. 2. Flowchart of indel data processing 

 
Fig. 3.  Flowchart of SNP data processing 



Our evaluation metrics to determine the strength of each 
method were the coefficient of determination (R2), area under 
the curve (AUROC) and accuracy (Acc.). R2 is included since 
it is a conventional method to ascertain the performance of a 
PRS due to its linearity. A confusion matrix for both traits 
were also constructed, and the recall, specificity and accuracy 
were calculated based on equations 3. 4. and 5. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 
 

V. RESULTS AND DISCUSSION 
To evaluate the prediction performance of the proposed 

EI-DNN method, we examined two diseases and compared to 
two previous PRS methodologies. Table I gives quantitative 
results of the weighted PRS, single DNN (sDNN), and EI-
DNN, while Fig. 4 and 5 shows the AUROC comparisons. It 
is found that the EI-DNN achieves the best performance than 
the other methods for both hypercholesterolemia and 
hypertension. This verifies that our ensemble DNN 
framework can improve the predictive power of polygenic 
risk scores.  

TABLE I. 

COMPARISON OF WEIGHTED PRS, SDNN AND EI-DNN MODELS 

 Hypercholesterolemia Hypertension 
Method R2 ROC Acc. R2 ROC Acc. 

Weighted 
PRS 

0.0192 0.5132 0.5811 0.2011 0.6359 0.5832 

sDNN 
 

0.5409 0.6033 
 

0.8939 0.7562 

EI-DNN 0.6961 0.6515 0.9113 0.7945 

 
In the ROC hypertension case in Fig. 6, sDNN and EI-

DNN are much closer together compared to the 
hypercholesterolemia case in Fig. 5. This is most likely due 
to the significantly increased feature set from the GWAS 
database for the hypertension case compared to the 
hypercholesterolemia case, where the SNPs have been 
validated to be relevant to this disease.  

 
Furthermore, while the overall accuracy is increased, it 

appears that when the false positive rate is <0.1, sDNN 
performs better than EI-DNN in Fig 5. The slightly worse 
performance at this range may be caused by instability from 
a smaller sample size. 

 

 

 
Table II and III gives the confusion matrices for the cases 

of hypercholesterolemia and hypertension respectively. 
Table IV gives a comparison of the recall, specificity, and 
accuracy of  

TABLE II. 

CONFUSION MATRIX FOR HYPERCHOLESTEROLEMIA 

Hypercholesterolemia 
Predicted 

Positive Negative 

Actual 

Positive 18 35 

Negative 78 194 

 

TABLE III 

CONFUSION MATRIX FOR HYPERTENSION 

Hypertension 
Predicted 

Positive Negative 

Actual 

Positive 84 44 

Negative 23 175 

 
 
 

 
Fig. 4.  Comparison of ROC curves for hypercholesterolemia 

 
Fig. 5.  Comparison of ROC curves for hypercholesterolemia 
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TABLE IV 

RECALL, SPECIFICITY, AND ACCURACY OF PRS, SDNN AND EI-DNN 
MODELS 

 Hypercholesterolemia Hypertension 
Rec. Spec. Acc. Rec. Spec. Acc. 

Weighted 
PRS 0.3051 0.6332 0.5811 0.3103 0.6344 0.5832 

sDNN 0.3433 0.6757 0.6068 0.8224 0.6140 0.7562 
EI-DNN 0.3396 0.7132 0.6515 0.6562 0.8838 0.7945 

 
The results in Table IV of the hypertension case were 

superior to the hypercholesterolemia case, similar to results 
depicted in the ROC curves in Fig 5. and Fig 6. Since there 
are only 12 SNPs in the GWAS that were provided, the 
weighted PRS and sDNN models which rely solely on these 
have bad accuracy and AUROC scores. Having the indel 
output seems to provide an increased prediction capability for 
both, but most notably the hypercholesterolemia test due to 
the lack of features initially.  

 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we proposed EI-DNN, a double DNN 

framework for the improvement of polygenic risk score 
prediction. EI-DNN is trained by making use of a second 
DNN to process indel data, a type of variants rarely used in 
normal PRS calculations. Compared with many classical 
algorithms in recent years, the proposed method has achieved 
better experimental results and is verified by experiments on 
real patient data. 
 

Our proposed approach still has limitations. The labels 
given with this dataset was limited and so only two binary 
diseases could be tested. Furthermore, this cohort only 
comprises of relatively healthy individuals, so a large 
proportion are negative for these traits, and such traits would 
be minor compared to more severe cases. Further work is now 
planned for other less studied diseases, such as endometriosis, 
which has substantially less research compared to CVD. 
Additionally, expanding to larger databases which has a 
larger number of patient cases would allow for further 
validation and could provide opportunity to develop a more 
robust algorithm. This includes multi-modal databases that 
have further information than purely genomic. Another area 
for further work would be interpreting the DNN and creating 
space for explainable AI, especially in the bioinformatics 
area.   
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